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Refraction and reflection of a nonrelativistic wave when the interface and the media are moving
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Generalized Snell-Descartes expressions are given in vector form for the refraction and reflection of a
classical sound wave when the two supporting fluids and their interface are in motion with nonrelativistic
speeds. The validity of Fermat's principle is extended to fluids at rest, separated by a moving interface.
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[. INTRODUCTION particular case of the general one treated in this paper. Not
even this less general case has been found by us in the lit-

The problem in the title could have been solved in a generature. If other solutions have escaped our bibliographical
eral manner already in the past century. However, we haveesearct{Sec. l), ours is still worth publishing since no trace
not found its general solution in recent specialized review®f the others appears in recent literature.
and treatise$1]. Indeed, the problem has interested several
workers in the past, bqt none qf them obtained real general Il. LITERATURE SURVEY
results. We survey their works in Sec. Il.

Actually we need the solution of this problem for a non-  Only the very particular case of the refraction of sound
relativistic model of elementary particles and also for thethrough a fixed interface separating the same fluid in two
classical interpretation of the Arago and the Michelson-parts, the fluid in one part being in motion parallel to the
Morley experiment. We therefore solve here the most geninterface, is reported in anothg2] of the above mentioned
eral case when the surface separating two different fluids haspecialized reviews. The same particular case but for light
a velocityV, the fluid in one half space has a nonrelativistic has been treated by Sd&. Works dealing with light waves
velocity u;, and the fluid in the other half space has a non-are taken into account in this literature survey for two rea-
relativistic velocityu,. Refraction is what we need for our sons: (i) had the general problem been solved for relativis-
future research. The reflection is also given for generality. tic waves, our case for sound would be a simple, particular

At first sight, it could appear strange to have three inde<case of it;(ii) when the fluids are at rest and the interface in
pendent velocities, namely;, u,, andV, sinceu,—u; must  motion (see our Sec. Il Bour treatment is valid for relativ-
be tangential to the bimaterial interface if the latter remaindstic waves, as well.
intact, i.e., if it acts as an impenetrable barrier without Ostashev in a rather comprehensive series of publications
sources, wells, and pores. As said, the general case of thréé], derived the refraction law for a sound ray in a stratified
independent velocities arose during the elaboration of a newnoving atmosphere, where the movement, though, is of the
nonrelativistic model of elementary particles conceived astratified medium as a whole and not of a layer relative to an
local concentrations of the ether. Such ether-concentratiomterface. At the other end of the problem, Ostashev consid-
particles are therefore thought of as exten(teat pointlike. ered sound propagation and scattering in randomly nonuni-
Within one of these extended patrticles, let us consider aform or turbulent medid5]. Again, the case of a stratified
ether isodensity surface (hereafter “the interface). If the  medium whose layers move relative to one another and rela-
particle is in a steady-state motion with velocity, and ifn  tive to their interface escaped his consideration and in fact
is the unit vector perpendicular @ in a pointP of it, itis  this case is not examined in his most recent and wide-
V=Vp-ﬁﬁ. The ether flows inside the particle through its coverage review§6].
forward front and escapes from it through its rear part. The Doak [7] also considered acoustic equations in moving
two neighborhoods oP on either side ofo have different  fluids, putting into evidence the fundamental nature of the
velocitiesu; andu, with u,—u; being, in general, not tan- convective, refractive, diffractive, and diffusive effects of the
gential to the interface. fluid motion and thermal inhomogeneity on the acoustic mo-

The most similar macroscopic example is that of a cylin-tion. It may be thought that convective motion includes the
der in which a porous piston moves with and keeps two shift of one layer relative to the other as a particularly simple
different pressures in the two parts containing the same gasase, however, the equations Doak writes are very general;
The densities, hence the speeds of sound, of the two parts ateey include both coherent and turbulent motion, and they
different and the diffusion of the gas contained in the part atire not in general amenable to analytic solution.
higher pressure into the other part at a lower pressure implies Yeh dealt with reflection and transmission of sound waves
u,—u; perpendicular to the piston surfa¢acting as an in- by a moving fluid layer[8] and with reflection from a
terface. dielectric-coated moving mirrdi9]. The relative movement

The familiar case ofi,—u, tangential to the interface is a of layer and interface was not considered in his treatment.
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Lyamshev[10] took into account an interface between A clarification is needed for the interfagethat can be a
moving media in the particular case of media sliding parallelgeneric surface with a regular motidine., without disconti-
to the interface and only to calculate the reflection and transauities. Locally, to find the refraction of a narrow wave
mission coefficients. MetiZl 1] observed that the deviation of beam(or ray), we can consider it as a plag& small portion
waves due to the movement of the propagation media, asf the tangent plane The two limitations(regular motion
obtained by geometrical methods, applies to waves bound tand narrow beaimmply that the two point#\ andD of Fig.
the medium, like mechanical and ultrasound waves, and thg have infinitesimal differences of velocity. For example, if
results are not experimentally verified for light. o is rotating with the center of rotation betwearandD, the

A theory of geometrical optics in moving dispersive me- velocities of bothA and D are infinitesimal, i.e.g is con-
dia, including the laws of reflection and refraction when twosideredlocally at rest. For a large beam, we divide it into
media slide past one another with no intervening vacuumnarrow beams and calculate separately the refraction for each
was set up by Syngel2], in the frame of the special theory of them, with theirlocal velocity V for o.
of relativity, reformulating the Hamilton’s method in the
Minkowski four-dimensional space-time instead of in three- A. First step
dimensional Euclidean space. However, Synge limited his

X ; ; . If uy is the velocity of the first fluidthrough which the
work to the particular case in which the observer is at rest  oming wave is bropacating before refractiovith respect
relative to the interface, as in the case of Morse and Un 9 bropagating P

Ingard[2], except that Synge treats the relativistic case. An(—?0 the laboratory syster8, we have io consider the wave in

e s ; e the syste at rest with the fluid 1. Let; andcy, be the
other I|m_|tat|on of Synge’s work is tha}t the velocities of the ave velggst)ies inS and S, respectively,l relafgé to each
two media must be equal and opposite. He also determine her by
the Lagrangian function for an isotropic mediumganeral
motion, but the restriction of this general motion to the case C1=Cor+Uj . (1)
of an isotropic mediumthere are no interfacgsules out
refraction, which is the object of our interest.

Eropkin [13] treated the problem of refraction across a
moving interface when the first medium is vacuum and the
second medium is at rest. Actually he stated that the second
medium moved rigidly with the interface, but we show in
Sec. V that his starting expression is pertinent only when the €,
second medium is at rest.

Picht [14] treated the reflection and refraction of optical 1
waves travelingn vacuoat the surface of a moving medium.
His procedure and results will be discussed and compared2 for A4’
with ours in our Sec. V, where the coincidence of Picht's j forBa’
results with our Eq(13) whency,=c (see Sec. I will also %
be put in evidence. -

The Arago experiment has been reexamined by Spavieri 2
et al. [15] but without taking into account the motion of the
lens with respect to the ether. Mamone-Capria and Pambi-
anco[16] have recently treated in a rigorous way the nonrel-
ativistic interpretation of the Michelson-Morley experiment,
considering the reflection on a mobile mirror. However, this £, 1. A nonrelativistic wave has velocity, in medium 1 and

is the case of reflection, moreover restricted to an ether alquiphase surfacaB perpendicular tasy, if the observerS, is at
rest with the observer. rest with medium 1. An interface having local velocityV, sepa-
rates medium 1 from medium 2. At time 0 medium 2 includes both
the streaked region and the shaded region. At timevhen B
1. REFRACTION reachesB’, medium 2 is represented by the shaded area only. The

We obtain refraction by the Huygens construction, i.e., byftregge_d re?ior_'fi\s/trla\tlswfgt ?ﬁ' thet imirfg’cﬁom time Obto tiTe d
the envelope of the refractédr reflected waves. In order to D=( B’;”%Josn)geAue?]ay %u_ring thee ;’nzeeain?ervrzﬁg)ert]vvlgei ()S:rr]gyan
giggr?ntthflse E?sr']tsrt:é(c:jtilgrg, r:gseet%u:)pehasé? z%g?c@j:\rlvgjvfheirAA’ travels only in medium 2 while raB’ travels only in me-

- . . Perp dium 1.0 is the unit vector perpendicular to the interface, chosen so
Velocmes'. This oceurs only in the reference Sysmt rest hat cy;-n>0. When a wave ray impinges on the interfaceAihe
with the first medium. To have neglected this fact has le

s ; ave is refracted in medium 2 with velocity,. PointB of the
Fahy[17] into error (corrected by Cavallerét al. [18]). wave front reaches the moving interface B, while point A

~ We find cog), of the refracted angle in three steps. In the ,gachesr” in medium 2 at rest witi$, so that the equiphase surface
first one we pass from the laboratory systerto the system  a’g’ s siill perpendicular to the refracted r&yHA’. This is the

Sy at rest with the first fluid. In the second step we performpyygens construction for media at rest but moving interfa¢@’

the Huygens construction , assuming the second medium being the envelope of the spherical waves radiated by the points of
2 at rest with medium 1. In the third step we consider thethe interface consecutively reached by the impinging wave front. In
actual velocityu, of medium 2 and we pass again to the the general case of media moving with velocitigsandus,, respec-
laboratory systenS. tively, we addu; to cy; andus, to cy,.
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Take the unit vecton perpendicular to the mobile interface Coit=|BD|+|DB’|=|AD|siny;+ Vo, t/coshy,. (7)
and directed so as,;-n>0. Then the incident angleg,; and
6, in Sy and S, respectively, are given by Similarly we may write| AA’|=cy,t as
CO§012 COl' ﬁ/COl (2) C02t:|A,H| + |HA|: |B,H|Sin602+ Voit/C03902, (8)
and where
COSA;=C; - N/Cy=(Cp1C0Hg;+ Uy - N)/Cy. ©) |[B'H|=|AD|+ Vg, t(tanfy,—tandyy). 9

Notice thatcy, is the speed of the wave in the fluid at rest. Obtainingt from Eq.(7) and substituting it in Eq(8) where
Eqg. (9) is used, gives, after simplifying the factpkD| that
B. Second step appears in both sides,

We perform the Huygens construction 8 considering . _
the fluid in the second medium at rest with the first one so Co2SINdo; = sm002< Co1—
that the reference systeBy is at rest with both fluids. The
situation of two fluids at relative rest in spite of the fact that i . sinfy;  Sinfg,
their boundary plane moves is theoretical and useful as an +V0lsm001sm002(w " cod )
. . . . K 01 02
intermediate step to find the final solution of the real problem
by adding(in the third step the relative velocityu,—u; to Sindg;
the velocity of the refracted wave. +Vo, C0¥y,

We plot in Fig. 1 the Huygens construction 8 where
the local velocity of the interface (i.e., of a small portion of ~ Simplifying Eq. (10), and calling
it where the wave beam impingeis V,=V —u; (we denote ] )
by V its velocity in the laboratory systef®). What is effec- M=Vg, SiNfg1; P=Co1~ Vo, COFp1; G=CoSINfoy,
tive is the component 1D

Vou
€c0Y,

(10

Vo, =V 4 we obtain

of V, along the normal to the interface. M COSoz+ P SINGoz= 0, (12
The unit vectom is drawn so that,,-n>0. Media 1 and

2 contain the incident and refracted wave, respectively: If

were at rest there would be no ambiguity about which one is ma=| p|(m2+ p2_q2)1/2

the incident wave. However, Wy, >cy,c0%y, it is the in- COSpo=

terface o that reaches the fleeing wave and we have to ex-

change medium 1 for 2 in Fig. 1. Consequentlypifis at |t v, = —|v,, | all the preceding expressions keep their va-

rest, medium 1 is always thabt containingn (drawn start- jigity.

ing from the irlterfac)e If oisin mOtiOI’l, medium 1 is that The same Eq€13) is obtained in the second Caﬁz_),

not containingn only if represented by Fig. 2. In fact, Eqd) and (8) become, re-

spectively,

whose solution is

mZt p? (13

$=50C108901~ Vo) 5
is plus, medium 1 is that containinyif s is minus. Cost = (Vo, t/C00y) ~ |AD|sinfly, 7
We consider the first case, i.e5+, in Fig. 1, where the

Huygens construction is plotted with respect to obse&ger
AB is the trace of the equiphase front in medium 1 at rest
(i.e., observed in systef®,) so that it is perpendicular to the
velocity cy;. The wave ray which impinges i& on the e
boundary plane begins to travel in medium 2 with the veloc- - ‘ X
ity cpp alongAA’. At time t when the phase front reach&s, X\ »p A
the same phase startedBrat timet,=0 reaches the moving W/’
2 for AA'

¥
boundary plane iB’. Since the ray sectioBB’ has always //
been in medium 1 and the ray sectid@’ in medium 2, it is 1 for BB’ 7o ///
7, //
]

t:|AA,|/C02:|BB’|/C01. (6) .....

The refracted phase frot'B’ is perpendicular tAA’ be- i

cause in this second step of our solution the medium 2 is still

considered at rest wit§,. This phase front is obtained as the

envelope of the spherical waves radiated by each point of the F|G. 2. Second case considered right after @4), i.e.,s=—,

boundary plane reached by the incoming wave. wheres is given by Eq.(5). Differently from Fig. 1, now medium 1
We see from Fig. 1 thgBB’|=cg,t may also be written is that containing i drawn from the interfaces since

as Vg1 >Cg1C0¥y,, i.€., o reaches the fleeing wave.
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and Obtaining t from Eg. (7') and substituting it in Eq(8")
where Eq.(9') is used, gives again Eq10), whence Eq.
C02t = (Voitlcoﬁoz) - | B'H |Sin002, (8,) (13)
To choose the sign in Eq13), we observe that the solu-
where tion represented by it is valid for any couple of valuesdgr
and cg,, therefore, whency;=cgy, as well. In this case
|B"H|=|AD|+ Vq, t(tanfy,—tandyy). (9')  cosfp,=cos,; and Eq.(13) becomes

_ Co1Vo, SiNfo1* [(Cor— Vo, C0n1) (€0160800;— Vo, )|

COYpo= 14
% Co1— 2C01Vo, COSHo1+ V5, 19
|
We then must further distinguish the following cases. wherec,=|cy,+U,|.
(i) s=+, wheres is given by Eq.(5), whose case coin- Summarizing, if we express all the quantities in the labo-
cides with the first case considered right after Ef).and  ratory systenSit is
shown in Fig. 1. Since
3 o 1 R mq+Sp(m2+p2_q2)l/2
1=c09991> Vo, /Co1= Vg, Cor COHp1, COYr=Cy-N= C_2 Uz-N+Cpp M2+ 2 )
(19

alsop=cgy;— Vp, C09y;>>0. We may eliminate the absolute
value sign in Eq(14) and we see that cdg,=cosf, implies  \herecy, is the known speed of the wave in the second fluid

that the plus has to be chosen in E&). when at rest. Moreover, transforming the relationshiph
The second case, mentioned right after Ef3) and {5 the laboratory syster§ and writing them in vector form,
shown in Fig. 2, splits into two subcases. we have

(i) s=— andcy;> Vg, COHyy, i.e.,p>0 with p defined in

Eq. (11. In this subcase, eliminating the absolute value sign A (c;—uy) -2 12
in Eq. (14) implies |cg:c081—Vo,|=Vo — €010 m=(V—u1)~n[l— —_ ] : (20)
and the sign minus has to be chosen in order to get &=y
COYp,=COHy; - R

(i) s=— andcy; <V, cofyy, i.e., p<0. In this subcase p=Cop— (V—uy)- (¢—uy-n 21)
we may directly eliminate the absolute value sign and we o1 ! lci—uy|
must choose the sign plus in E{.4) to get cosfy;=coby,
[as in casdi)]. (c;—uyp)-n|?) Y2

We may therefore synthesize the above case and subcases qzcoz[ 1- W ] . (22
in the single equation r

12 When V=u;=u,=0 Eg. (19 reduces to Snell's law

mg+sp(m?+ p?—g?)

c,Sing,;=c,sing,.
e+ p? , (15 28ING; =C4SING;

COS@()Z:

with s given by Eq.(5). IV. REFLECTION

Reflection on a mobile surface may be treated in a similar
C. Third step way with the obvious simplificationsi;=u,=u, c;=c,,
— —_ | — | —_ H
We now introduce the third step of our procedure: sinceo1=Co2=Co, and|AA’|=[BB’[=a=c,t (see Fig. 3 We
the medium 2 moves with velocity,—u; in Sy, the velocity take the same sign conventions as in the case of refraction,

* : - PN choosingn so that cosy;=cy;-N/c,>0. Consequently, we
C; of the wave in medium Zmeasured irg) is still get Egs.(11) and(12). The only difference with respect

Cs = Copt Upy—Uy. (16p O refraction is that the opposite sign has to be chosen in Eq.
(13). Moreover, since&y;=Cy=Cq, EQ. (13) reduces to Eq.

In the laboratory syster8 the velocityc, of the wave in (14). The final solution for the reflected anglg is therefore

medium 2 is obtained by the velocity composition fr&to
the laboratory systers:

- . 1 . mMa—pP(Cp1c08001— Vo, )
" COH,,=Cy-N=—1{U-N+Cq > > .
C;=C; +U;=Copt Up. (17) C1 pT+m

Consequently, taking the scalar productrbgf the first and @3
third side of Eq.(17) gives, sincec,-N=c,Co%,, For u=0 Eq. (23 reduces to that of Mamone-Capria and
Pambiancd16] and foru=V=0 to co®,,=—c0%,; (usual
€O, = (CrCO0H o+ Uy - N)/Cy, (18  reflection on a fixed surfage
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This is why Picht needs not pass from obseiS¢o S; at rest
with the first fluid. Moreover, Picht disregards the sign prob-
lem, i.e., he does not introduce tBegiven by our Eq.(5),
and this procedure leads to a correct result only in ¢asef
our Sec. Il B but not in subcasés) and (iii ).

Notice that Eropkin’s Eq(15) is valid when both fluids
are at rest, and only their interface is in motigrormally to
itself) as can clearly be seen by E§) of Eropkin. Looking
at Eropkin’s Fig. 2, denoting biythe time for the light ray to
go from the starting poinA to the interface and by, the
time for the light ray to travel from the interface to the arrival
point B in the second medium, we hagg=ct; (the first
medium is vacuum s, = cyt,= cty/n (if the second medium
is at res}, i.e., ns,=ct,. Adding the two equations we get
s;tns,=c(t,+t,)=ct, which is Eq.(9) of Eropkin. We
clearly see that his equation is valid when both media are at

FIG. 3. Ray with nonrelativistic velocitgy, in a medium at rest  rest and only the interface is in motion, contrary to the state-
with observerS, impinges inA on a mirror moving with velocity ment at the beginning of his Sec. 3. Consequently, he has
Vy. The reflected wave is obtained by the Huygens construction aeated the problem only under the condition of our second
the envelope of the spherical waves radiated by the points of thetep(our Sec. Il B.
mirror consecutively reached by the impinging wave. Since the me-

dium is at rest witt5, the wave frontAB is perpendicular ta,, and VI. CONCLUSIONS
the reflected wave frord’B’ is perpendicular to its velocitgy,.
The streaked region is that swept by the mircoduring the time We have thus solved the general problem of refraction in
interval between 0 and. The shaded region is that beyond the the nonrelativistic approximation when the two media and
mirror at timet. the interface are moving. The solution for the cosine of the
refracted wave is given by EL9), valid when|u,| and|u,)|
V. DISCUSSION AND COMPARISONS are small compared to the speed of light The velocity

V= Bc of the interface can, on the contrary, be comparable
It might be argued that nonrelativistic waves are onlywith c. In such a case our treatment implies that one knows
sound waves, and therefore, our theory cannot be applied the correct direction ofi in the systens, at rest with fluid 1.
the interpretation of light or e.m. wave experiments. ThisThe same considerations hold for reflection whose solution is
possible objection could arise from the fact that we are usediven by Eq.(23). Previous workg13,14 have only ob-
to consider light transmission in media with refraction indextained our second stef®ec. Il B). Moreover, one of them
n<2. However, for the sake of generality our results could[13] is only in implicit form, and the other14] is in explicit
well apply to e.m. transmission near absorption frequenciedprm but disregards the signgiven by Eq.(5).
wheren>1. Moreover, our second stéfec. Il B) is valid Nevertheless it is interesting that EropKih3] had ob-
even for a relativistic value oV. tained our implicit Eq.(12) starting from the Fermat prin-
We now compare our results with those of the works thatiple, while we started from the Huygens construction. No-
approached the problem, giving relevant contributionstice that so far Fermat's principle had been theoretically
When cy;=c, our Eqg.(13) reduces to that found by Picht proved only for fluids and interface at rest. The coincidence
[14] who, however, treated only the case of light. Indeed, forof the two results now proves that Fermat’s principle is valid
light, the casey,=c means that the first medium is vacuum. even when the interface is in motion, if the fluids are at rest.
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