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Generalized Snell-Descartes expressions are given in vector form for the refraction and reflection of a
classical sound wave when the two supporting fluids and their interface are in motion with nonrelativistic
speeds. The validity of Fermat’s principle is extended to fluids at rest, separated by a moving interface.
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I. INTRODUCTION

The problem in the title could have been solved in a gen-
eral manner already in the past century. However, we have
not found its general solution in recent specialized reviews
and treatises@1#. Indeed, the problem has interested several
workers in the past, but none of them obtained real general
results. We survey their works in Sec. II.

Actually we need the solution of this problem for a non-
relativistic model of elementary particles and also for the
classical interpretation of the Arago and the Michelson-
Morley experiment. We therefore solve here the most gen-
eral case when the surface separating two different fluids has
a velocityV, the fluid in one half space has a nonrelativistic
velocity u1, and the fluid in the other half space has a non-
relativistic velocityu2. Refraction is what we need for our
future research. The reflection is also given for generality.

At first sight, it could appear strange to have three inde-
pendent velocities, namelyu1, u2, andV, sinceu22u1 must
be tangential to the bimaterial interface if the latter remains
intact, i.e., if it acts as an impenetrable barrier without
sources, wells, and pores. As said, the general case of three
independent velocities arose during the elaboration of a new,
nonrelativistic model of elementary particles conceived as
local concentrations of the ether. Such ether-concentration
particles are therefore thought of as extended~not pointlike!.
Within one of these extended particles, let us consider an
ether isodensity surfaces ~hereafter ‘‘the interface’’!. If the
particle is in a steady-state motion with velocityVp , and if n̂
is the unit vector perpendicular tos in a pointP of it, it is
V5Vp•n̂n̂. The ether flows inside the particle through its
forward front and escapes from it through its rear part. The
two neighborhoods ofP on either side ofs have different
velocitiesu1 andu2 with u22u1 being, in general, not tan-
gential to the interface.

The most similar macroscopic example is that of a cylin-
der in which a porous piston moves withV and keeps two
different pressures in the two parts containing the same gas.
The densities, hence the speeds of sound, of the two parts are
different and the diffusion of the gas contained in the part at
higher pressure into the other part at a lower pressure implies
u22u1 perpendicular to the piston surface~acting as an in-
terface!.

The familiar case ofu22u1 tangential to the interface is a

particular case of the general one treated in this paper. Not
even this less general case has been found by us in the lit-
erature. If other solutions have escaped our bibliographical
research~Sec. II!, ours is still worth publishing since no trace
of the others appears in recent literature.

II. LITERATURE SURVEY

Only the very particular case of the refraction of sound
through a fixed interface separating the same fluid in two
parts, the fluid in one part being in motion parallel to the
interface, is reported in another@2# of the above mentioned
specialized reviews. The same particular case but for light
has been treated by Saca@3#. Works dealing with light waves
are taken into account in this literature survey for two rea-
sons: ~i! had the general problem been solved for relativis-
tic waves, our case for sound would be a simple, particular
case of it;~ii ! when the fluids are at rest and the interface in
motion ~see our Sec. III B! our treatment is valid for relativ-
istic waves, as well.

Ostashev in a rather comprehensive series of publications
@4#, derived the refraction law for a sound ray in a stratified
moving atmosphere, where the movement, though, is of the
stratified medium as a whole and not of a layer relative to an
interface. At the other end of the problem, Ostashev consid-
ered sound propagation and scattering in randomly nonuni-
form or turbulent media@5#. Again, the case of a stratified
medium whose layers move relative to one another and rela-
tive to their interface escaped his consideration and in fact
this case is not examined in his most recent and wide-
coverage reviews@6#.

Doak @7# also considered acoustic equations in moving
fluids, putting into evidence the fundamental nature of the
convective, refractive, diffractive, and diffusive effects of the
fluid motion and thermal inhomogeneity on the acoustic mo-
tion. It may be thought that convective motion includes the
shift of one layer relative to the other as a particularly simple
case, however, the equations Doak writes are very general;
they include both coherent and turbulent motion, and they
are not in general amenable to analytic solution.

Yeh dealt with reflection and transmission of sound waves
by a moving fluid layer@8# and with reflection from a
dielectric-coated moving mirror@9#. The relative movement
of layer and interface was not considered in his treatment.
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Lyamshev@10# took into account an interface between
moving media in the particular case of media sliding parallel
to the interface and only to calculate the reflection and trans-
mission coefficients. Metz@11# observed that the deviation of
waves due to the movement of the propagation media, as
obtained by geometrical methods, applies to waves bound to
the medium, like mechanical and ultrasound waves, and the
results are not experimentally verified for light.

A theory of geometrical optics in moving dispersive me-
dia, including the laws of reflection and refraction when two
media slide past one another with no intervening vacuum,
was set up by Synge@12#, in the frame of the special theory
of relativity, reformulating the Hamilton’s method in the
Minkowski four-dimensional space-time instead of in three-
dimensional Euclidean space. However, Synge limited his
work to the particular case in which the observer is at rest
relative to the interface, as in the case of Morse and Uno
Ingard@2#, except that Synge treats the relativistic case. An-
other limitation of Synge’s work is that the velocities of the
two media must be equal and opposite. He also determined
the Lagrangian function for an isotropic medium ingeneral
motion, but the restriction of this general motion to the case
of an isotropic medium~there are no interfaces! rules out
refraction, which is the object of our interest.

Eropkin @13# treated the problem of refraction across a
moving interface when the first medium is vacuum and the
second medium is at rest. Actually he stated that the second
medium moved rigidly with the interface, but we show in
Sec. V that his starting expression is pertinent only when the
second medium is at rest.

Picht @14# treated the reflection and refraction of optical
waves travelingin vacuoat the surface of a moving medium.
His procedure and results will be discussed and compared
with ours in our Sec. V, where the coincidence of Picht’s
results with our Eq.~13! whenc015c ~see Sec. III! will also
be put in evidence.

The Arago experiment has been reexamined by Spavieri
et al. @15# but without taking into account the motion of the
lens with respect to the ether. Mamone-Capria and Pambi-
anco@16# have recently treated in a rigorous way the nonrel-
ativistic interpretation of the Michelson-Morley experiment,
considering the reflection on a mobile mirror. However, this
is the case of reflection, moreover restricted to an ether at
rest with the observer.

III. REFRACTION

We obtain refraction by the Huygens construction, i.e., by
the envelope of the refracted~or reflected! waves. In order to
perform this construction, the equiphase surfaces~or wave
fronts! in the first medium have to be perpendicular to their
velocities. This occurs only in the reference systemS0 at rest
with the first medium. To have neglected this fact has led
Fahy @17# into error ~corrected by Cavalleriet al. @18#!.

We find cosu2 of the refracted angle in three steps. In the
first one we pass from the laboratory systemS to the system
S0 at rest with the first fluid. In the second step we perform
the Huygens construction inS0 assuming the second medium
2 at rest with medium 1. In the third step we consider the
actual velocityu2 of medium 2 and we pass again to the
laboratory systemS.

A clarification is needed for the interfaces that can be a
generic surface with a regular motion~i.e., without disconti-
nuities!. Locally, to find the refraction of a narrow wave
beam~or ray!, we can consider it as a plane~a small portion
of the tangent plane!. The two limitations~regular motion
and narrow beam! imply that the two pointsA andD of Fig.
1 have infinitesimal differences of velocity. For example, if
s is rotating with the center of rotation betweenA andD, the
velocities of bothA andD are infinitesimal, i.e.,s is con-
sideredlocally at rest. For a large beam, we divide it into
narrow beams and calculate separately the refraction for each
of them, with theirlocal velocity V for s.

A. First step

If u1 is the velocity of the first fluid~through which the
incoming wave is propagating before refraction! with respect
to the laboratory systemS, we have to consider the wave in
the systemS0 at rest with the fluid 1. Letc1 andc01 be the
wave velocities inS and S0, respectively, related to each
other by

c15c011u1 . ~1!

FIG. 1. A nonrelativistic wave has velocityc01 in medium 1 and
equiphase surfaceAB perpendicular toc01 if the observerS0 is at
rest with medium 1. An interfaces having local velocityV0 sepa-
rates medium 1 from medium 2. At time 0 medium 2 includes both
the streaked region and the shaded region. At timet, when B
reachesB8, medium 2 is represented by the shaded area only. The
streaked region is that swept by the interfaces from time 0 to time
t. ~Obviously, if V05V0'50 the streaked region is absent and
D5B8!. Consequently, during the time interval between 0 andt ray
AA8 travels only in medium 2 while rayBB8 travels only in me-
dium 1.n̂ is the unit vector perpendicular to the interface, chosen so
that c01•n̂.0. When a wave ray impinges on the interface inA the
wave is refracted in medium 2 with velocityc02. Point B of the
wave front reaches the moving interface inB8, while point A
reachesA8 in medium 2 at rest withS0 so that the equiphase surface
A8B8 is still perpendicular to the refracted rayAHA8. This is the
Huygens construction for media at rest but moving interface,A8B8
being the envelope of the spherical waves radiated by the points of
the interface consecutively reached by the impinging wave front. In
the general case of media moving with velocitiesu1 andu2, respec-
tively, we addu1 to c01 andu2 to c02.
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Take the unit vectorn̂ perpendicular to the mobile interface
and directed so asc01•n̂.0. Then the incident anglesu01 and
u1 in S0 andS, respectively, are given by

cosu015c01•n̂/c01 ~2!

and

cosu15c1•n̂/c15~c01cosu011u1•n̂!/c1 . ~3!

Notice thatc01 is the speed of the wave in the fluid at rest.

B. Second step

We perform the Huygens construction inS0 considering
the fluid in the second medium at rest with the first one so
that the reference systemS0 is at rest with both fluids. The
situation of two fluids at relative rest in spite of the fact that
their boundary plane moves is theoretical and useful as an
intermediate step to find the final solution of the real problem
by adding~in the third step! the relative velocityu22u1 to
the velocity of the refracted wave.

We plot in Fig. 1 the Huygens construction inS0 where
the local velocity of the interfaces ~i.e., of a small portion of
it where the wave beam impinges! is V05V2u1 ~we denote
by V its velocity in the laboratory systemS!. What is effec-
tive is the component

V0'5V0•n̂ ~4!

of V0 along the normal to the interface.
The unit vectorn̂ is drawn so thatc01•n̂.0. Media 1 and

2 contain the incident and refracted wave, respectively. Ifs
were at rest there would be no ambiguity about which one is
the incident wave. However, ifV0'.c01cosu01 it is the in-
terfaces that reaches the fleeing wave and we have to ex-
change medium 1 for 2 in Fig. 1. Consequently, ifs is at
rest, medium 1 is always thatnot containingn̂ ~drawn start-
ing from the interface!. If s is in motion, medium 1 is that
not containingn̂ only if

s5sgn~c01cosu012V0'! ~5!

is plus, medium 1 is that containingn̂ if s is minus.
We consider the first case, i.e.,s51, in Fig. 1, where the

Huygens construction is plotted with respect to observerS0.
AB is the trace of the equiphase front in medium 1 at rest
~i.e., observed in systemS0! so that it is perpendicular to the
velocity c01. The wave ray which impinges inA on the
boundary plane begins to travel in medium 2 with the veloc-
ity c02 alongAA8. At time t when the phase front reachesA8,
the same phase started inB at timet050 reaches the moving
boundary plane inB8. Since the ray sectionBB8 has always
been in medium 1 and the ray sectionAA8 in medium 2, it is

t5uAA8u/c025uBB8u/c01. ~6!

The refracted phase frontA8B8 is perpendicular toAA8 be-
cause in this second step of our solution the medium 2 is still
considered at rest withS0. This phase front is obtained as the
envelope of the spherical waves radiated by each point of the
boundary plane reached by the incoming wave.

We see from Fig. 1 thatuBB8u5c01t may also be written
as

c01t5uBDu1uDB8u5uADusinu011V0't/cosu01. ~7!

Similarly we may writeuAA8u5c02t as

c02t5uA8Hu1uHAu5uB8Husinu021V0't/cosu02, ~8!

where

uB8Hu5uADu1V0't~ tanu012tanu02!. ~9!

Obtainingt from Eq. ~7! and substituting it in Eq.~8! where
Eq. ~9! is used, gives, after simplifying the factoruADu that
appears in both sides,

c02sinu015sinu02S c012 V0'

cosu01
D

1V0'sinu01sinu02S sinu01cosu01
2
sinu02
cosu02

D
1V0'

sinu01
cosu02

. ~10!

Simplifying Eq. ~10!, and calling

m5V0'sinu01; p5c012V0'cosu01; q5c02sinu01,
~11!

we obtain

m cosu021p sinu025q, ~12!

whose solution is

cosu025
mq6upu~m21p22q2!1/2

m21p2
. ~13!

If V0'52uV0'u all the preceding expressions keep their va-
lidity.

The same Eq.~13! is obtained in the second case~s52!,
represented by Fig. 2. In fact, Eqs.~7! and ~8! become, re-
spectively,

c01t5~V0't/cosu01!2uADusinu01, ~78!

FIG. 2. Second case considered right after Eq.~13!, i.e., s52,
wheres is given by Eq.~5!. Differently from Fig. 1, now medium 1
is that containing n̂ drawn from the interfaces since
V0'.c01cosu01, i.e.,s reaches the fleeing wave.

54 6293REFRACTION AND REFLECTION OFA . . .



and

c02t5~V0't/cosu02!2uB8Husinu02, ~88!

where

uB8Hu5uADu1V0't~ tanu022tanu01!. ~98!

Obtaining t from Eq. ~78! and substituting it in Eq.~88!
where Eq.~98! is used, gives again Eq.~10!, whence Eq.
~13!.

To choose the sign in Eq.~13!, we observe that the solu-
tion represented by it is valid for any couple of values forc01
and c02, therefore, whenc015c02 as well. In this case
cosu025cosu01 and Eq.~13! becomes

cosu025
c01V0'sin

2u016u~c012V0'cosu01!~c01cosu012V0'!u
c01
2 22c01V0'cosu011V0'

2 . ~14!

We then must further distinguish the following cases.
~i! s51, wheres is given by Eq.~5!, whose case coin-

cides with the first case considered right after Eq.~5! and
shown in Fig. 1. Since

1>cosu01.V0' /c01>V0'c01
21cosu01,

alsop5c012V0'cosu01.0. We may eliminate the absolute
value sign in Eq.~14! and we see that cosu025cosu01 implies
that the plus has to be chosen in Eq.~14!.

The second case, mentioned right after Eq.~13! and
shown in Fig. 2, splits into two subcases.

~ii ! s52 andc01.V0'cosu01, i.e.,p.0 with p defined in
Eq. ~11!. In this subcase, eliminating the absolute value sign
in Eq. ~14! implies uc01cosu012V0'u5V0'2c01cosu01
and the sign minus has to be chosen in order to get
cosu025cosu01.

~iii ! s52 andc01,V0'cosu01, i.e., p,0. In this subcase
we may directly eliminate the absolute value sign and we
must choose the sign plus in Eq.~14! to get cosu015cosu02
@as in case~i!#.

We may therefore synthesize the above case and subcases
in the single equation

cosu025
mq1sp~m21p22q2!1/2

m21p2
, ~15!

with s given by Eq.~5!.

C. Third step

We now introduce the third step of our procedure: since
the medium 2 moves with velocityu22u1 in S0, the velocity
c2* of the wave in medium 2~measured inS0! is

c2*5c021u22u1 . ~16!
In the laboratory systemS the velocityc2 of the wave in

medium 2 is obtained by the velocity composition fromS0 to
the laboratory systemS:

c25c2*1u15c021u2 . ~17!

Consequently, taking the scalar product byn̂ of the first and
third side of Eq.~17! gives, sincec2•n̂5c2cosu2,

cosu25~c02cosu021u2•n̂!/c2 , ~18!

wherec25uc021u2u.
Summarizing, if we express all the quantities in the labo-

ratory systemS it is

cosu25 ĉ2•n̂5
1

c2
H u2•n̂1c02

mq1sp~m21p22q2!1/2

m21p2 J ,
~19!

wherec02 is the known speed of the wave in the second fluid
when at rest. Moreover, transforming the relationships~11!
to the laboratory systemS and writing them in vector form,
we have

m5~V2u1!•n̂H 12F ~c12u1!•n̂

uc12u1u
G2J 1/2, ~20!

p5c012~V2u1!•n̂
~c12u1!•n̂

uc12u1u
, ~21!

q5c02H 12F ~c12u1!•n̂

uc12u1u
G2J 1/2. ~22!

When V5u15u250 Eq. ~19! reduces to Snell’s law
c2sinu15c1sinu2.

IV. REFLECTION

Reflection on a mobile surface may be treated in a similar
way with the obvious simplificationsu15u25u, c15c2 ,
c015c025c0 , and uAA8u5uBB8u5a5c0t ~see Fig. 3!. We
take the same sign conventions as in the case of refraction,
choosing n̂ so that cosu015c01•n̂/c0.0. Consequently, we
still get Eqs.~11! and~12!. The only difference with respect
to refraction is that the opposite sign has to be chosen in Eq.
~13!. Moreover, sincec015c025c0 , Eq. ~13! reduces to Eq.
~14!. The final solution for the reflected angleur2 is therefore

cosu r25 ĉ2•n̂5
1

c1
H u•n̂1c0

mq2p~c01cosu012V0'!

p21m2 J .
~23!

For u50 Eq. ~23! reduces to that of Mamone-Capria and
Pambianco@16# and foru5V50 to cosur252cosur1 ~usual
reflection on a fixed surface!.
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V. DISCUSSION AND COMPARISONS

It might be argued that nonrelativistic waves are only
sound waves, and therefore, our theory cannot be applied to
the interpretation of light or e.m. wave experiments. This
possible objection could arise from the fact that we are used
to consider light transmission in media with refraction index
n<2. However, for the sake of generality our results could
well apply to e.m. transmission near absorption frequencies,
wheren@1. Moreover, our second step~Sec. III B! is valid
even for a relativistic value ofV.

We now compare our results with those of the works that
approached the problem, giving relevant contributions.
When c015c1 our Eq. ~13! reduces to that found by Picht
@14# who, however, treated only the case of light. Indeed, for
light, the casec015c means that the first medium is vacuum.

This is why Picht needs not pass from observerS toS0 at rest
with the first fluid. Moreover, Picht disregards the sign prob-
lem, i.e., he does not introduce thes given by our Eq.~5!,
and this procedure leads to a correct result only in case~i! of
our Sec. III B but not in subcases~ii ! and ~iii !.

Notice that Eropkin’s Eq.~15! is valid when both fluids
are at rest, and only their interface is in motion~normally to
itself! as can clearly be seen by Eq.~9! of Eropkin. Looking
at Eropkin’s Fig. 2, denoting byt the time for the light ray to
go from the starting pointA to the interface and byt2 the
time for the light ray to travel from the interface to the arrival
point B in the second medium, we haves15ct1 ~the first
medium is vacuum!, s25c02t25ct2/n ~if the second medium
is at rest!, i.e., ns25ct2 . Adding the two equations we get
s11ns25c(t11t2)5ct, which is Eq. ~9! of Eropkin. We
clearly see that his equation is valid when both media are at
rest and only the interface is in motion, contrary to the state-
ment at the beginning of his Sec. 3. Consequently, he has
treated the problem only under the condition of our second
step~our Sec. III B!.

VI. CONCLUSIONS

We have thus solved the general problem of refraction in
the nonrelativistic approximation when the two media and
the interface are moving. The solution for the cosine of the
refracted wave is given by Eq.~19!, valid whenuu1u and uu2u
are small compared to the speed of lightc. The velocity
V5bc of the interface can, on the contrary, be comparable
with c. In such a case our treatment implies that one knows
the correct direction ofn̂ in the systemS0 at rest with fluid 1.
The same considerations hold for reflection whose solution is
given by Eq. ~23!. Previous works@13,14# have only ob-
tained our second step~Sec. III B!. Moreover, one of them
@13# is only in implicit form, and the other@14# is in explicit
form but disregards the signs given by Eq.~5!.

Nevertheless it is interesting that Eropkin@13# had ob-
tained our implicit Eq.~12! starting from the Fermat prin-
ciple, while we started from the Huygens construction. No-
tice that so far Fermat’s principle had been theoretically
proved only for fluids and interface at rest. The coincidence
of the two results now proves that Fermat’s principle is valid
even when the interface is in motion, if the fluids are at rest.
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